{NAT A-

paabuyfTiu

GRONY 3TUDY A ‘
unclas
g277003




Py

SOFTWARE ENGINEERING LABORATORY SERIES SEL-88-001

SYSTEM TESTING OF A
PRODUCTION ADA® PROJECT:
THE GRODY STUDY

NNAS

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771



-

F RD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC) and

created for
of software
development
in 1977 and

the purpose of investigating the effectiveness
engineering technologies when applied to the
of applications software. The SEL was created
has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Systems Development Opera-

tion)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that include this document.

The contributors to this document include

Jeffrey Seigle (Computer Sciences Corporation)

Linda Esker (Computer Sciences Corporation)

Ying-Liang Shi (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

National Technological Information Service
5285 Port Royal Road
Springfield, Virginia 22161

NASA Scientific and Technical Installation Facility
P.O. Box 8757
BWI Airport, Maryland 21240

ii



L

i

fl

5202

Systems Development Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

iii



{

ABSTRACT

The use of the Ada® language and design methodologies

that utilize its features has a strong impact on all phases
of the software development project lifecycle. At the Na-
tional Aeronautics and Space Administration/Goddard Space
Flight Center (NASA/GSFC), the Software Engineering Labora-
tory (SEL) conducted an experiment in parallel development
of two flight dynamics systems in FORTRAN and Ada. The teams
fohnd some qualitative differences between the system test
phases of the two projects. Although planning for system
testing and conducting of tests were not generally affected
by the use of Ada, the solving of problems found in system
testing was generally facilitated by Ada constructs and de-
sign methodology. Most problems found in system testing
were not due to difficulty with the language or methodology
but to lack of experience with the application.

Ipda® is a registered trademark of the U. S. Government Ada
Joint Program Office (AJPO).

iv
5202



4.1
4.2

(S, 8]
N

5202

TA F NTENT

ion - Intr ion. . . . .« o« . . e

n — Definiti £ th £
i - Writi h T n. . . .
ion 4 - n in h m o e e e

Impact of Ada Features . . . . « + « + .+ &
TOOLS. + v v o o o o o o o o« « s s s o« o &

i - ror i ver rj T

Source of Data . . . . . . : . .
Classes of Errors Dlscovered Dur1ng System

Testing. . . . . . e
Solving Errors Found Durlng System Testlng

.3.1 Isolating Errors. . . . . . « « .
.3.2 Repairing Errors. . . . + « « .« .
3.3 Nonlanguage Differences . . . . .

U'|U10'I

i n - L n L n . . . . . L] . .

ion — Acknowl men e e e e s e e e e

in



§

{

{

f

5202

F LUSTRA N

Effort for Testing on the Ada Project. .
Effort for Testing on the FORTRAN Project.
Classes of Errors Found During System
Testing. . . ¢ ¢ ¢ ¢« + ¢« ¢ &« o « o«
Time to Isolate Errors Found in System
Testing. . . . . .

Time to Repair Errors Found in System Test-

ing. . & 0 0 0 s e e e e e e e e e e e

vi



|
\i

i

ECTION 1 - TRODUCTION

Ada®1 is not just a new programming language but a part

of a major advance in software engineering technology that
includes new approaches for all phases of the software de-
velopment lifecycle. This paper, one of a series of reports
examining each project phase [Brophy 1987, Brophy 1988],
evaluates the impact of the use of Ada when compared with
FORTRAN in the system test phases of two projects.

The Software Engineering Laboratory (SEL) of the National
Aeronautics and Space Administration/Goddard Space Flight
Center (NASA/GSFC) conducted an experiment involving the
parallel development of a software system in both the Ada
and FORTRAN programming languages.2 NASA/GSFC and Com-
puter Sciences Corporation (CSC) were cosponsors of the
experiment, which was supported by personnel from the three
SEL participating organizations: NASA/GSFC, CSC, and the
University of Maryland. The chief goals of the study were
to characterize the development lifecycle of a large project
when Ada is used as the implementation language with a de-
sign methodology that can take advantage of its features and
to determine the impact of the use of Ada on reusability,
reliability, maintainability, productivity, and portability.

Two teams each developed a Gamma Ray Observatory (GRO) sat-
ellite dynamics simulator from the same specifications. One
team used FORTRAN as the target language with a conventional

Ipda® is a registered trademark of the U. S. Government
Ada Joint Program OQOffice (AJPO).

2The acronyms were Gamma Ray Observatory (GRO) DYnamics

Simulator in Ada (GRODY) for the Ada project and GRO Dynam-
ics Simulator in FORTRAN (GROSS) for the FORTRAN project.

5202



i

{

L

("

{

design methodology, which is the usual approach for this
type of application. The other team used Ada, with an
object-oriented design methodology developed at NASA/GSFC
[Seidewitz, Stark 1986]. NASA uses the GRO dynamics simula-
tor to test and to evaluate GRO flight software under condi-
tions that simulate the expected in-flight environment as
closely as possible [Agresti 1986]. By the end of the
system testing phases, the teams had produced 39,767 lines
of FORTRAN and 128,046 lines of Ada, where lines of code are
the total number of physical lines including exe- cutable
code and nonexecutable code, comments, and blank lines.
Although these figures give a rough idea of the com-
parative sizes of the two efforts, they do not give a pre-
cise basis for comparison of the effort required for
development in the two languages [Firesmith 1988].

Data were collected directly from team members and from a
database maintained by SEL. Members of both teams who par-
ticipated in system testing were interviewed and asked about
their expectations, actual findings, problems, solutions,

and opinions. Team members also completed forms throughout
the projects describing their effort levels and changes to
code, and that information was entered into the SEL database.
Presented data are taken from the database, and other sources
are referred to since much of the data has already been
reported.

5202



:&

ECTION = FINITION QF THE SY T PHASE

Ada unit testers performed some integration before system
testing officially began. System testing and unit testing
effort overlapped considerably. The team members reported
their hours on Personnel Resource Forms (PRFs) and attributed
hours to specific activities. Figures 2-1 and 2-2 show the
weekly efforts for unit testing and system testing on the

two projects.

In the FORTRAN project, a clear delineation exists between
effort attributed to system testing and effort attributed to
unit testing although they overlap slightly. 1In the Ada
project, participants were performing system test work at
the same time as unit test work, and the overlap is consid-
erable. This overlap plus team members' comments suggest
that the line between unit testing and system testing was
blurred on the Ada project.

When the data from PRFs giving time attributed specifically
to system testing is considered and this effort is calcu-
lated as a percentage of total project effort, the Ada proj-
ect used 11.3 percent of its effort on system testing, and
the FORTRAN project used 8.91 percent. 1In addition to de-
fining activities by the hours attributed directly to them,
each project phase had a formal start and end date. Regard-
less of attributed activity, the sum of all effort occurring
during the system test phases was found and the effort during
system test determined as a percentage of all effort on the
entire project. Of the total effort on the two projects,

the portion used during the system test phase was 22.8 per-
cent on the Ada project and 17.9 percent on the FORTRAN
project. The standard allotment for system testing is

20 percent in the flight dynamics area. The Ada project
system testing phase was not grossly out of proportion, but

a general conclusion cannot be drawn about the language since

2-1
5202



(2102025

309fo1d epv 8yl uo Hutrlsal 103 310339 "T1-¢ ®anbig

103r0Hd OLNI SHIFIM
SL) S91 Ssi
At PPN N

PP B SEP |

Syl S5€t 1A
Al N

ASVHC NOLLY INGWId 40 ONT

1S31L W3LSAS YOV HO4 LHO443

- 09
= 08
- 001

- 021

) bl S S

ovt

o o } LY

SHNOH-344VIS

i

Co)

5202



5-(2)92028 v

309[01d NVYI¥Od 9Y3j uo Hut3issl 103 31033 'Z-Z 21nb1g

103r0td OLNI SYIIM
SiL 01 56 58 S/

1531 1INN NYHLHOS HOA 1HO443

S9 SS Sy

3SVYHd NOILLVY.LNIW31dNI 4O AN3

SHNOH-34VLS

JSYH 1S31 WALSAS 40 AN3

1531 W3LSAS NVHIHO4 HO4 1HO443

3SVHJ 1S31 W31SAS 4O 1HVIS

5202



I

U

I

other variables, such as greater training time for the Ada
project and overlap of activities other than system testing
in the system testing phases, exist.

5202



ECTION = WRITING THE SYSTEM TEST N

The author of the system test plan for the Ada experiment
[Stark 1987] said that the plan was based on the FORTRAN
plan being developed in parallel [Garrick]. He found no
need for special consideration because of the use of Ada or
the object-oriented design methodology; this is consistent
with the idea that system test plans in this environment are
generally written to test aéainst functional specifications,
which ideally do not depend on the implementation language.
However, because the Ada team did not have the same schedule
constraints as the FORTRAN team, they defined more tests--31
compared to 14 for the FORTRAN team.

5202



TI = NDUCTING T YST T

4.1 IMPACT OF ADA FEATURES

Conducting system tests was not generally different for the
Ada project than for the FORTRAN project. The system test
teams usually did not need to examine internals to run tests
and to evaluate results. However, the Ada team did find a
few Ada features that needed special attention.

One case in which an Ada featﬁre was an issue was in induc-
ing conditions that would cause Ada exceptions to be raised.
Many times this inducement was relatively easy, such as de-
letion of a required file; other times it was not, i.e., for
exceptions that flagged conditions that may not be intro-
duced externally such as division by zero. Although some
exceptions were difficult to test overall, the team felt
that they aided in comprehensive error handling.

The Ada test team reported that it was difficult to coordi-
nate concurrent tasks for testing although this coordination
can be challenging regardless of the language. The Ada lan-
guage offers tasking but FORTRAN does not, so the Ada team
took advantage of the ease of tasking more than the FORTRAN
team [Brophy 1988]. Although concurrency was easier to
design and implement in Ada, the team reported that set-
ting up tests and diagnosing problems were more difficult.
They agreed, however, that these problems were not peculiar
to Ada but would be found in any system using concurrency
and that since tasking was easier to implement, Ada provided
a net advantage when using concurrency.

The FORTRAN project used a form of tasking that was supported
by the operating system; the method did not provide true con-
currency but a series of tasks whose execution was controlled
by logic within the application software. Only one task was
active at any given time. The FORTRAN team did not report

4-1
5202



a0

any unusual problems in testing a system with this architec-
ture and attributed only one or two errors to difficulties
stemming from their tasking approach.

Occasionally, the Ada rename feature caused confusion during
debugging sessions. This was attributed to the debugger's
failure to incorporate the rename feature rather than to a
difficulty in the language. When the debugger did not rec-
ognize the name used to rename a variable, programmers would
query the debugger for the value of a variable, and if it
were a name used to rename another variable, they could not
get the value. This problem was discussed with a member of
the Digital Equipment Corporation (DEC) Ada team; she said
she was unaware of the problem and would treat it as a bug.
She believed the problem should be fixed and that it might
even be resolved in the next release of the debugger.

Although the Ada exception handling, tasking, and rename
features required special attention and caused some prob-
lems, none was a major roadblock, and the team felt the
power added by these features outweighed the difficulties.

4.2 TIQOLS

Ada development is still relatively new, so despite many
excellent offerings of Ada tools, their availability is
neither as great as nor as widely known as the tools for the
more mature FORTRAN environment. The Ada team developed
software on a DEC VAX/VMS system,1 and DEC offers tools

that are compatible with Ada for use on the VAX [Schultz
1988].' The DEC symbolic debugger and Code Management System
(CMS) were the tools used in system testing. When asked
what other tools would have been useful, one team member

IpEC, VAX, and VMS are registered trademarks of Digital
Equipment Corporation.

5202



suggested that the DEC Performance and Coverage Analyzer
(PCA) would also have been helpful; other team members re-
sponded that they did not suggest that other tools were nec-
essary because they had no information about other available
tools. Although no clear need was identified for additional
tools, more information regarding the availability of other
Ada-oriented testing tools would have been helpful.

The FORTRAN team also developed their system on a VAX and
used only a debugger. They felt that tool was sufficient
for their testing.

5202



1

i

[

TION —_ ERROR I A D_DURIN YSTEM TESTIN

5.1 R F_DAT

All team members recorded information for each software
change on a Change Report Form (CRF). The CRF describes the
type of change. Data were examined for changes with a type
of error correction. When the type of change is an error
correction, the form also describes the class of error, the
source of the error, the time to isolate the error, and the
time to implement the change. This data was entered into
the SEL database.

5.2 ASSE VERED DURIN YSTEM TESTI

Brophy noted that Ada developers in the experiment found
unit testing to be more difficult for Ada [Brophy 1988].
Since the team found isolation of Ada units to be difficult,
unit testing usually involved combinations of units rather
than single units. The team members reported that the types
of errors discovered through this method of unit testing
were often mismatched data interfaces and con- flicting
assumptions between internal components, which are errors
more typical of those discovered in later testing phases of
conventional FORTRAN projects. Although this in- tegration
increased unit testing effort, the team believed that it
made system testing easier. The team members also found
that the semantic checking performed by the Ada com- piler
uncovered mismatched calling sequences at compile time that
would not have been found in FORTRAN until run time.

The errors described on the CRFs were divided into the fol-
lowing classes: computational, data value (usage of vari-
ables), data initialization, external interface, internal
interface, and logic. Figure 5-1 shows the distribution of
errors for each project by class of error.

5202



e
\\\\\\\\\\\\\\\\\\\\\\\ .

L
AL \\\\

\\\\\\\ u,




IW

Of the total errors found during system testing, internal
interface errors accounted for 21 percent in the Ada project
and 29 percent in the FORTRAN project. However, this appar-
ent difference is not statistically significant.

Because the Ada system was not intended to become opera-
tional, managers placed a lower priority on it when assign-
ing effort to it, and it was difficult to get support that
the team thought they needed from analysts who had strong

- backgrounds in the specific application. The team attributed

most errors to misinterpretation of the specifications, such
as errors in mathematical computation, rather than design
errors or coding errors.

The design for the FORTRAN project was largely based on
stable designs of similar systems already developed, and
approximately 36 percent of the code was reused from other
systems. No precedent existed for an Adé system of the type
being developed; therefore, the design was new, and only 2
percent of the code was reused from previous systems
[McGarry, Agresti 1988]. This difference in reuse is another
variable that may have affected the error profile of the
FORTRAN project.

5.3 LVIN RS _FOQUN RIN YSTEM TESTIN

5.3.1 ISOLATING ERRORS

The Ada system test team reported that in some ways the Ada
code was easier to debug than similar FORTRAN systems be-
cause the design methodology controls access to related data
as opposed to the FORTRAN implementation that exploited large
COMMON blocks with little control over data access. For the
same reason the scope of effect of software errors was more
limited in the Ada implementation. The team reported that
they generally found errors easily in the Ada implementation
because of the program structures that are enforced by the

language. However, the times to isolate causes of errors

5-3
5202



indicate that the Ada team actually spent more time solving
errors than the FORTRAN team. The CRFs described time to
isolate an error defined as the time it took for the respon-
sible developer to isolate an error and does not include the
time to determine who is the responsible developer. As shown
in Figure 5-2, both teams solved most of their errors in less
than 1 hour; however, the FORTRAN team solved 82 percent of
errors in less than 1 hour, and the Ada team solved only 58
percent in less than 1 hour. When the first two categories
are combined, they show that the proportion of errors solved
in less than 1 day were similar for both projects: 94 per-
cent for the FORTRAN project and 96 percent for the Ada proj-
ect.

The Ada compiler does semantic checking that spots some er-
rors that would not be found until testing in a FORTRAN sys-
tem, so the proportion of easier to solve errors may have
been reduced in the Ada system test phase.

The development team found the readability of Ada as com-
pared to FORTRAN, in part due to more rigid coding standards,
to be a clear advantage in debugging, except where long var-
iable names appeared in complex mathematical expressions.

In some instances, this problem was easily solved by the
judicious selection of variable names and by renaming varia-
bles with long names when they were used in such expressions.

5.3.2 REPAIRING ERRORS

As shown in Figure 5-3, once the problems were isolated the
FORTRAN team needed slightly less time to make the changes.
Although the Ada compiler is more comprehensive and detects °
some errors earlier, it often requires recompilation of un-
changed units that are dependent on changed units. Compila-
tion errors can occur even in unchanged units being
recompiled. This recompilation was sometimes a significant

effort, particularly because of the configuration of the Ada

5-4
5202



£-(2)92025

GREATER THAN 3 DAYS

1-3 DAYS

FORTRAN

vi

B ADA

15|

1HOUR-1 DAY

%

a8

LESS THAN 1 HOUR

L IIIIIHHH
& § 8 & 8 8 S 8 & 2 °
SHOUYHI 40 IN3OH3d
5-5

5202

TIME TO ISOLATE ERRORS

Time to Isolate Errors Found in System Testing

Figure 5-2.



SHOYHI 4



(.

system. The Ada implementation decision of nesting versus
library units had a ripple effect in debugging at the system
test level; a great deal of recompilation was necessary be-
fore some coding changes could be tested. This complaint
also surfaced in the implementation phase [Brophy 1988].

5.3.3 NONLANGUAGE DIFFERENCES

The FORTRAN team members had greater experience in both the
language in which they were working and in the particular -
application [McGarry, Agresti 1988]. The Ada team consist-
ently reported that the single biggest obstacle to effective
system testing was the lack of availability of people who
were intimately familiar with the technical aspects of the
application. Although the Ada team members were experienced
software developers, having on the average more years of
software development experience than the FORTRAN team mem-
bers [McGarry, Agresti 1988], their lack of experience with
the specific application made it more difficult for them to
detect and solve errors than for the FORTRAN team. These
differences in personnel background may account for the
ability of the FORTRAN team to isolate and correct errors
with equal or less effort than the Ada team, despite the
lanquage advantages described by the Ada team.

5202



I

ECTION - LE N ARNED

All personnel involved in both projects believed that soft-
ware development in Ada with an appropriate design methodol-
ogy is a different experience than the conventional FORTRAN
development of similar systems. '

Team members have subjectively attributed the many differ-
ences between the results of the two projects to various
differences in languages and'design methodologies, but too
many variables exist to be able to clearly assign all effects
in the system test phases to their causes. Some general
statements can be made about what was learned.

r i i n i h w n
h r inc n ge. The system test plan
for Ada was essentially the same as the plan for FORTRAN.
When running the tests, testers were not concerned with the
language.

dr rtoj £ ls is important. The extra effort
needed to resolve confusion and software problems due to the
error in the debugger shows the impact of even minor prob-
lems with tool software. An organization can most effec-
tively use its human resources if it has a good tool set and
actively promotes the use of the tools.

may r m rrors. Team members consist-
ently reported that the Ada compiler detected many of their
interface errors even before testing began. Objective data
neither confirms nor contradicts this assertion, but it is a
reasonable one since the Ada compiler checks for correct
interfaces, and the FORTRAN compiler does not.

Ada may be easier to debug. Team members reported that

Ada's better readability and the organization of the team's
design allowed them to find errors more easily than the

5202



\

. (I L N

i

!

FORTRAN team. Objective data neither confirms nor contra-
dicts this assertion, partly because of uncontrolled experi-
mental variables.

mp i i A ni n _hav i n
Recompilation issues should be considered short of compro-
mising the integrity of the design. It is important to con-
trol the design to avoid unnecessary dependencies that will
require extensive recompilation in testing phases.

Definition of test phases for Ada systems is not well de-
fined. Testing Ada software at the system level is not as
clearly defined as was presumed at the outset of the project.

Although the system test plan itself was nearly the same as

for the FORTRAN project, and it was clear which tests were
to be designated system tests, it is very difficult to draw
a hard line between unit testing and system testing. Test-
ing Ada software must be approached differently than testing
systems where functions can be easily isolated for testing.

The differences that could clearly be attributed to the use
of Ada were generally positive ones, and Ada features with
negative aspects were either redeemed by their advantages or
easily mitigated. As the Ada environment matures and as
developers get more experience, we expect improvements to
occur in the building and testing of systems built with Ada
and object-oriented design when compared to methods that are
still considered conventional.

5202



V.

(R

1
|
i

i

I

SECTION 7 - ACKNOWLEDGMENTS

The authors thank Frank McGarry of NASA/GSFC and the Ada and
FORTRAN teams for their effort and cooperation.

5202



{

{1 f

m

I

IR

(]

REFERENCE

Agresti, W., et al., "Designing with Ada for Satellite Simu-
lation: A Case Study," Proceedings of the First Annual Sym-
posium on Ada Applications for the NASA Space Station,
Houston, Texas, June 1986

Brophy, C., et al., "Lessons Learned in Use of Ada-Oriented
Design Methods," Proceedings of the Joint Ada Conference,
Arlington, Virginia, March 1987

Brophy, C., et al., "Lessons Learned in the Implementation
of a Large Ada Project," Proceedings of the Washington Ada
Technical Conference, March 1988

Firesmith, D., "Mixing Apples and Oranges, or; What Is an
Ada Line of Code Anyway," Ada Letters, September/October
1988, vol. VIII, no. 5, pp. 110-12

Garrick, J., GROSS System Test Plan (unpublished)

McGarry, F., and W. Agresti, "Measuring Ada for Software
Development in the Software Engineering Laboratory (SEL),"
Proceedings of the 21st Annual Hawaii International Confer-
ence on System Sciences, Kaila-Kona, Hawaii, January 1988

Schultz, B. J., "Industry Use of a Multi-Language Software
Development Environment,® Proceedings of the Sixth National
Conference on Ada Technology, March 1988

Seidewitz, E. and M. Stark, General Object-Oriented Software
Development, National Aeronautics and Space Administration,
SEL-86-002, August 1986

Stark, M., v RO namics Simula in
Ada (gRQDY) ngtg Test Plgn, Computer Sciences Corporatlon,

December 1987

5202



e

e

I

STANDARD BIBLIQGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED c NT

SEL-76- 001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton
and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engl-
neering Workshop, September 1978

SEL-78-006, F ftwar ngin ing R rch Requiremen
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, A i i
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program

(SAP) User's Guide (Revision 3), W. J. Decker and
W. A. Taylor, July 1986

SEL-79-002, Th iy
ship Equations, K. Freburger and V. R. Ba5111, May 1979

SEL-79-003, mmon ftware M le Re i CSMR m

Description and User's Guide, C. E. Goorev1ch A. L. Green,

and S. R. Waligora, August 1979

SEL-79-004, Eval ion of th in Farber n rdon Pro-

gram Design Lanquage (PDL) in the Goddard Space Flight Cen-
FC 8 ftware Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

B-1
5202



(NI

“‘

SEL-79-005, in From the Fourth r ftware En-
gineering Workshop, November 1979

SEL-80-002, Multi-lLev X ion Design Langquage-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Multimission M

ftwar MMS/ -of-th —Ar m er S ms/
Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, f the M
A. M, Miller, November 1980

SEL-80-006, Pr in Fr h i 1al Softwar ngi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL- 81 008, iabjili i i M 1 CAREM
User's Guide, J. F Cook and E. Edwards, February 1981

SEL-81-009, ftwar ngineering L r ry Programmer Work-—

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981
SEL-81-011, Eval in ftwar

Change Data, D. M. Weiss, November 1981

SEL-81-012, igh Distri
bution Over thg L1f§ of Medi u Sgg e Sg tware xgtg § G. O.

Picasso, December 1981

SEL-81-013, Pr in From_ th ixth Annual ftware Enqi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
i ftwar ngineering L rator SEL),

A. L. Green, W. J. Decker, and F, E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Softwar ngineering L ra SEL) Da

rganization an r' i Revision 1, P Lo and
D. Wyckoff, July 1983

5202



SEL-81-104, Th ftware Enqgineering L T ry, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL 81-106,

W, Taylor and W, J. Decker, May 1985

SEL-81-107, Software Engingering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-110, Eval i f n ndent Verifi i n

Vali ion (IV&V) Meth 1 o ight Dynamicgs, G. Page,
F. E. McGarry, and D. N. Card, June 1985 -
SEL-81-203, ftwar ngin i L r T D B

Maintenan S m (DBAM ' i n s D rip-

tion, P. Lo, June 1984

SEL-81-205, R n A ach ftwar velopmen
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Eval ion of nagement M r f ftwar

Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Engineering Laboratory (SEL) Data Base

w
Reportin ftwar r' i and S m D ription,
P. Lo, August 1983
SEL-82-004, 11 oftware Engin
ume 1, July 1982
SEL-82-007, in Fr h venth Annual ftwar

Engineering Workshop, December 1982
SEL-82-008, Evaluating Software Development by Analysis of

han : The D From th ftware Engineering L rator
V. R. Basili and D. M. Weiss, December 1982
SEL-82-102, FORTRAN Static Source Code Analyzer Program
AP m ipti Revision , W. A, Taylor and

W. J. Decker, April 1985
SEL-82-105,

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

5202



I

{

SEL-82-606, Annota Bibliograph f ftware Engineerin
Laboratory Literature, S. Steinberg, November 1988

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, ftware Engin
ume IT, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, in Fr h ighth Annual ftware En-
gineerind Workshop, November 1983

SEL-84-001, Manager's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, nfiquration Managemen n ntrol: Polici
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the
Software Engineering Laboratory (SEL), W. W. Agresti,
V. E, Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Engi-
neering Workshop, November 1984

SEL-85-001,

ni , D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, 11 ftware Engineerin

ume ITIT, November 1985

SEL-85-004, Eval ion ftware Technologies: in
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985
SEL-85-005, Software Verification and Testing, D. N. Card,

C. Antle, and E. Edwards, December 1985
SEL-85-006, P ings Fr he Tenth An 1 ftware Engi-
neering Workshop, December 1985

B-4
5202



{1

i

SEL-86-001, Pr F ,
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, igh nami m ftware Development En-
vironment Tutorijal, J. Buell and P. Myers, July 1986
SEL-86-004, 1 ftware Engin

ume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October
1986 :

SEL-86-006, in Fr he Eleven Annual ftwar

Engineering Workshop, December 1986

SEL-87-001, Pr A ran lici

nd Procedur for
Flight Dynamics Software Development, S. Perry et al., March
1987

SEL-87-002, Ada Stvle Guide (Version 1.1), E. Seidewitz
et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specifica-
tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Ass in h ign Pr nd 1 Impli-

cations: A Case Study, S. Godfrey, C. Brophy, et al.,

July 1987 '

SEL-87~005, Flight Dynamics Analysis System (FDAS) Build 3

User's Guide, §. Chang et al., October 1987

SEL-87-006, Flight Dynami nalysi ‘FDAS) B

System Description, S. Chang, October 1987

SEL-87-007, Application Software Under the El;ght Dynamics
Analysis System (FDAS) Build 3, S. Chang et al., October 1987
SEL-87-008, D 11 ion Pr r r the Reh

Database, G. Heller, October 1987

SEL-87-009, 1 ftwar in in apers: Volume V,

S. DeLong, November 1987

SEL-87-010, Proceedings From the Twelfth Annual Software En-
gineering Workshop, December 1987

5202



i

SEL-88-001, mT in f r ion roij : h

GRODY Study, J. Seigle and Y. Shi, November 1988
SEL-88-002, Collected Software Engineering Papers: Vol-
ume VI, November 1988

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

4agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"

r in f th ir ional ium A r
the NASA Space Station, June 1986

2pgresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology,” Program Transformation and Pro-

rammi Environments. New York: Springer-Verlag, 1984
lpailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures,” Pr in f th

h International nferen n ftwar ngineerin

New York: IEEE Computer Society Press, 1981

lpasili, V. R., "Models and Metrics for Software Manage-

ment and Eng1neer1ng * ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics f ftwar
Man men n ngineering. New York: IEEE Computer Society
Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quant1tat1ve Evaluagtion of Software Meth-
odology.," in he Fi Pan- i mputer n-
ference, September 1985

lpasili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-

lems?,"” Journal of Systems and Software, February 1981,

vol. 2, no. 1

lpasili, v. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory.,”

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL,"
I in f th nternational m ftwar nd Ap-

plications Conference, October 1985

B-6
5202



{

11l

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliaghility Assessment in the SEL Environment, University

of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation,”" Communications of
the ACM, January 1984, vol. 27, no. 1

lpasili, V. R., and T. Phillips, “"Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"”
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
ity Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,”
Pr ings of th MITR xper ms i vernmen

Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development,” Proceedings of the Workshop

on Quantitative Software Models for Reliability, Complexity,
and Cost. New York: 1IEEE Computer Society Press, 1979

S5Basili, V. and H. D. Rombach, "Tailoring the Software
Process to Project Goals and Environments," Proceedings of
the 9th International Conference on Software Engineering,
March 1987

SBasili, V. and H. D. Rombach, "T A M E: Tailoring an Ada

Measurement Environment," Proceedings of the Joint Ada Con-
ference, March 1987

SBasili, V. and H. D. Rombach, "T A M E: Integrating Meas-
urement Into Software Environments,” University of Maryland,
Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project:
Towards Improvement-Oriented Software Environments," IEEE

Transactions on Software Engineering, June 1988

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE

Transactions on Software Engineering, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"

in £ th ighth rnation ren n ft-
ware Engineering. New York: IEEE Computer Society Press,
1985

5202

-l



{

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-

ness of Software Testing Strateqies, University of Maryland,
Technical Report TR-1501, May 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "“Ex-
perimentation in Software Engineering," IEEE Transactions on
Software Engineering, July 1986

S5Basili, V. and R. Selby, "Comparing the Effectiveness of
Software Testing Strategies,”" IEEE Transactions on Software
Engineering (in press)

2Basili, V. R., and D. M. Weiss, A Meth 1 r 11 in

Valid Software Engineering Data, University of Maryland, Tech-
nical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-

ing Valid Software Engineering Data,"” IEEE Transactions on
Software Engineering, November 1984

lpasili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives,” Proceedings of the Fif-

n nnua ren n mpu rsonnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment,” Pr in h ftware Lif
Cycle Management Workshop, September 1977

lpasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-

ware Engineering Laboratory," Proceedings of the Second Soft-
i ement Workshop, August 1978

lpasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-

puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-

tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1978

5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned
in Use of Ada-Oriented Design Methods," Proceedings of the
Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,
"Lessons Learned in the Implementation Phase of a Large Ada

Project," Proceedings of the Washington Ada Technical Con-
ference, March 1988

5202



3card, D. N., "A Software Technology Evaluation Program,"

Annais do XVIII Congresso Nacional de Informatica, October
1985

S5card, D. and W. Agresti, "Resolving the Software Science
Anomaly, " rn f S m n ftware, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design

Complexity,” The Journal of Systems and Software, June 1988

4card, D., N., V. E. Church, and W. W. Agresti, "An Em-
pirical Study of Software Design Practices," 1E Trans-

actions on Software Engineering, February 1986

S5card, D., F. McGarry, and G. Page, "Evaluating Software

Engineering Technologies,"” IEEE Transactions on Software
Enqgineering, July 1987

3card, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedings of the Eighth Interna-

tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1985

lchen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-

ings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

4Cchurch, V. E., D. N. Card, W. W. Agresti, and
Q. L. Jordan, "An Approach for Assessing Software Proto-

types," ACM Software Engineering Notes, July 1986

2poerflinger, C. W., and V. R. Basili, "Monitoring Software

Development Through Dynamic Variables," Proceedings of the
venth In national mpu ftwar nd Appli ion

Conference. New York: IEEE Computer Society Press, 1983

Spoubleday, D., "ASAP: An Ada Static Source Code Analyzer
Program,"” University of Maryland, Technical Report TR-1895,
August 1987 (NOTE: 100 pages long)

6Godfrey, S. and C. Brophy, "Experiences in the Implementa-
tion of a Large Ada Project," Proceedings of the 1988

Washington Ada Symposium, June 1988
Hamilton, M., and S. Zeldin, A Demonstrati ES for

NAVPAK, Higher Order Software, Inc., TR-9, September 1977
(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, "Characterizing Resource
Data: A Model for Logical Association of Software Data,"
University of Maryland, Technical Report TR-1848, May 1987

B-9
5202



Mot

c i

6Jeffery, D. R., and V. R, Basili, "Validating the TAME

Resource Data Model," Pr dings of the Tenth International
Conference on Software Engineering, April 1988

5Mark, L. and H. D. Rombach, "A Meta Information Base for
Software Engineering,"” University of Maryland Technical
Report TR-1765, July 1987

6éMark, L. and H. D. Rombach, "Generating Customized Soft-
ware Engineering Information Bases from Software Process and

Product Specifications,” in h Annual
Hawaii International Conference on System sglengeg January
1989

SMcGarry, F. and W. Agresti, "Measuring Ada for Software
Development in the Software Engineering Laboratory (SEL),"

Proceedin f th 1 Annual Hawaii International n-
ference on System Sciences, January 1988

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-

ment Process and Product,” in he Hawaiic Inter—~
national Conference on System Sciences, January 1985

3page, G., F. E. McGarry, and D. N. Card, “A Practical Ex-
per1ence With Independent Ver1f1cat10n and vValidation,®
ftwar

and Appllga Q s ggnferenge November 1984

SRamsey, C. and V. R. Basili, "An Evaluation of Expert Sys-
tems for Software Engineering Management," University of
Maryland, Technical Report TR-1708, September 1986

3Ramsey, J., and V. R. Basili, "“Analyzing the Test Process

Using Structural Coverage,"” Proceedings of the Eighth Inter-
national Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

SRombach, H. D., “A Controlled Experiment on the Impact of
Software Structure on Maintainability," I n ion n

Software Engineering, March 1987

6Rombach H. D., and V. R. Basili, "Quantitative Assessment

of Maintenance: An Industrial Case Study," Proceedings from
the Conference on Software Maintenance, September 1987

6rRombach, H. D., and L. Mark, "Software Process and Prod-
uct Specifications: A Basis for Generating Customized SE

Information Bases," Pr i f th 2nd Annual Haw
International Conference on System Sciences, January 1989
B-10

5202



(]

5seidewitz, E., "General Object-Oriented Software Develop-
ment: Background and Experience," Proceedings of the 21st

Hawaii International Conference on System Sciences, January
1988

6seidewitz, E., "General Object-Oriented Software Develop-
ment with Ada: A Life Cycle Approach," Proceedings of the
CASE Technology Conference, April 1988

6Seidewitz, E., "Object-Oriented Programming in Smalltalk

and Ada " ELQQQQQLmmiJL_JLJL_ﬁﬁ__QQQLQLQEQQJuLLKD_QL_

Programmi 1i ions,
October 1987

4seidewitz, E., and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedings of
he Fir International sium a r th ASA

Station, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-
Oriented Ada Lifecycle,” in f th int A n—
ference, March 1987

Turner, C., and G. Caron, mparison AD nd NASA

Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

Svalett, J. and F. McGarry, "A Summary of Software Measure-
ment Experlences in the Software Eng1neer1ng Laboratory,“

ence on st;g §glgngg§ January'1988

3Weiss, D. M., and V. R, Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-

ware Engineering Laboratory," IEEE Transactions on Software
Engineering, February 1985

SWu, L., V. Basili, and K. Reed, "A Structure Coverage Tool

for Ada Software Systems," in h int A n-
ference, March 1987 ,

lzelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects,"™ Pr in f the Twelfth nferenc

he In f isti n m r ience. New York:

IEEE Computer Society Press, 1979

5202



i

{

27Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedings),
November 1982

6zelkowitz, M. V., "The Effectiveness of Software Proto-
typing: A Case Study,"” Proceedings of the 26th Annual Tech-

nical Symposium of the Washinaton, D, C,, Chapter of the ACM,
June 1987

6zelkowitz, M. V., "Resource Utilization During Software
Development, " rnal of m n ftware, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedings of the Soft-
ife September 1977

NOTES:

lThis article also appears in SEL-82-004, 11 ft—
ngineering P : Volume I, July 1982,

2This article also appears in SEL-83-003, Collected Soft-
ngineerj Papers: V m , November 1983.

3This article also appears in SEL-85-003, 11 ft-

ware Engineering Papers: Volume III, November 1985.
4This article also appears in SEL-86-004, Collected Soft-

war nagineering Papers: Volum V, November 1986.
SThis article also appears in SEL-87-009, 1 ft-
ngineering P : Volume V, November 1987.

6This article also appears in SEL-88-002, Collected Soft-

ware Engineering Papers: Volume VI, November 1988.
B-12

5202



1




